See Fourier transform in All languages combined, or Wiktionary
{ "etymology_text": "Named after French mathematician and physicist Jean Baptiste Joseph Fourier, who initiated the study of what is now harmonic analysis.", "forms": [ { "form": "Fourier transforms", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Fourier transform (plural Fourier transforms)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Dutch translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with French translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Galician translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Greek translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Italian translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Japanese translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Persian translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Polish translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Romanian translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Russian translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Spanish translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Swedish translations", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Complex analysis", "orig": "en:Complex analysis", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Electrical engineering", "orig": "en:Electrical engineering", "parents": [ "Electricity", "Engineering", "Electromagnetism", "Applied sciences", "Technology", "Physics", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Functions", "orig": "en:Functions", "parents": [ "Algebra", "Calculus", "Geometry", "Mathematical analysis", "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematical analysis", "orig": "en:Mathematical analysis", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Physics", "orig": "en:Physics", "parents": [ "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "derived": [ { "word": "inverse Fourier transform" }, { "alt": "CFT", "word": "continuous Fourier transform" }, { "alt": "DFT", "word": "discrete Fourier transform" }, { "alt": "FFT", "word": "fast Fourier transform" }, { "alt": "FTIR", "word": "Fourier-transform infrared spectroscopy" } ], "examples": [ { "text": "Fourier transforms are not limited to acting on functions of time, but the domain of the original function is commonly called the time domain.", "type": "example" }, { "text": "The Fourier transform of a function of time is a complex function of frequency, whose magnitude (absolute value) represents the amount of that frequency present in the original function, and whose argument is the phase offset of the basic sinusoid in that frequency.", "type": "example" }, { "ref": "2002, J. F. James, A Student's Guide to Fourier Transforms, 2nd edition, Cambridge University Press, page 116:", "text": "Since a separate integration is needed to give each point of the transformed function, the process would become extremely tedious if it were to be attempted manually and many ingenious devices have been invented for preforming Fourier transforms mechanically, electrically, acoustically and optically.", "type": "quote" }, { "text": "2005, Emmanuel Letellier, Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras, Springer, Lecture Notes in Mathematics 1859, page 1,\nThe trigonometric sums of 𝒢^F are thus (up to a scalar) the Fourier transforms of the characteristic functions of the G^F!!-orbits of 𝒢^F." }, { "text": "2012, David Brandwood, Fourier Transforms in Radar and Signal Processing, Artech House, 2nd Edition, page 1,\nThe Fourier transform is a valuable theoretical technique, used widely in fields such as applied mathematics, statistics, physics, and engineering." } ], "glosses": [ "A particular integral transform that when applied to a function of time (such as a signal), converts the function to one that plots the original function's frequency composition; the resultant function of such a conversion." ], "hypernyms": [ { "word": "integral transform" } ], "id": "en-Fourier_transform-en-noun-L5yIgGqN", "links": [ [ "mathematical analysis", "mathematical analysis" ], [ "physics", "physics" ], [ "electrical engineering", "electrical engineering" ], [ "integral transform", "integral transform" ], [ "signal", "signal" ] ], "qualifier": "harmonic analysis", "raw_glosses": [ "(mathematical analysis, harmonic analysis, physics, electrical engineering) A particular integral transform that when applied to a function of time (such as a signal), converts the function to one that plots the original function's frequency composition; the resultant function of such a conversion." ], "synonyms": [ { "tags": [ "initialism" ], "word": "FT" } ], "topics": [ "business", "electrical", "electrical-engineering", "electricity", "electromagnetism", "energy", "engineering", "mathematical-analysis", "mathematics", "natural-sciences", "physical-sciences", "physics", "sciences" ], "translations": [ { "code": "nl", "lang": "Dutch", "sense": "mathematics: a type of integral transform", "word": "Fouriertransformatie" }, { "code": "nl", "lang": "Dutch", "sense": "mathematics: a type of integral transform", "word": "Fourier-transformatie" }, { "code": "fi", "lang": "Finnish", "sense": "mathematics: a type of integral transform", "word": "Fourier-muunnos" }, { "code": "fr", "lang": "French", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "transformation de Fourier" }, { "code": "gl", "lang": "Galician", "sense": "mathematics: a type of integral transform", "word": "transformada de Fourier" }, { "code": "de", "lang": "German", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "Fouriertransformation" }, { "code": "de", "lang": "German", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "Fourier-Transformation" }, { "code": "el", "lang": "Greek", "roman": "metaschimatismós Fourié", "sense": "mathematics: a type of integral transform", "tags": [ "masculine" ], "word": "μετασχηματισμός Φουριέ" }, { "code": "it", "lang": "Italian", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "trasformata di Fourier" }, { "code": "ja", "lang": "Japanese", "roman": "Fūrie henkan", "sense": "mathematics: a type of integral transform", "word": "フーリエ変換" }, { "code": "fa", "lang": "Persian", "roman": "tabdil-e furiye", "sense": "mathematics: a type of integral transform", "word": "تبدیل فوریه" }, { "code": "pl", "lang": "Polish", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "transformacja Fouriera" }, { "code": "ro", "lang": "Romanian", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "tranformare Fourier" }, { "code": "ru", "lang": "Russian", "roman": "preobrazovánije Furʹjé", "sense": "mathematics: a type of integral transform", "tags": [ "neuter" ], "word": "преобразова́ние Фурье́" }, { "code": "es", "lang": "Spanish", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "transformada de Fourier" }, { "code": "sv", "lang": "Swedish", "sense": "mathematics: a type of integral transform", "tags": [ "common-gender" ], "word": "Fouriertransform" } ], "wikipedia": [ "Fourier transform", "Jean Baptiste Joseph Fourier" ] } ], "word": "Fourier transform" }
{ "derived": [ { "word": "inverse Fourier transform" }, { "alt": "CFT", "word": "continuous Fourier transform" }, { "alt": "DFT", "word": "discrete Fourier transform" }, { "alt": "FFT", "word": "fast Fourier transform" }, { "alt": "FTIR", "word": "Fourier-transform infrared spectroscopy" } ], "etymology_text": "Named after French mathematician and physicist Jean Baptiste Joseph Fourier, who initiated the study of what is now harmonic analysis.", "forms": [ { "form": "Fourier transforms", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Fourier transform (plural Fourier transforms)", "name": "en-noun" } ], "hypernyms": [ { "word": "integral transform" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English nouns", "English terms with quotations", "English terms with usage examples", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Dutch translations", "Terms with Finnish translations", "Terms with French translations", "Terms with Galician translations", "Terms with German translations", "Terms with Greek translations", "Terms with Italian translations", "Terms with Japanese translations", "Terms with Persian translations", "Terms with Polish translations", "Terms with Romanian translations", "Terms with Russian translations", "Terms with Spanish translations", "Terms with Swedish translations", "en:Complex analysis", "en:Electrical engineering", "en:Functions", "en:Mathematical analysis", "en:Physics" ], "examples": [ { "text": "Fourier transforms are not limited to acting on functions of time, but the domain of the original function is commonly called the time domain.", "type": "example" }, { "text": "The Fourier transform of a function of time is a complex function of frequency, whose magnitude (absolute value) represents the amount of that frequency present in the original function, and whose argument is the phase offset of the basic sinusoid in that frequency.", "type": "example" }, { "ref": "2002, J. F. James, A Student's Guide to Fourier Transforms, 2nd edition, Cambridge University Press, page 116:", "text": "Since a separate integration is needed to give each point of the transformed function, the process would become extremely tedious if it were to be attempted manually and many ingenious devices have been invented for preforming Fourier transforms mechanically, electrically, acoustically and optically.", "type": "quote" }, { "text": "2005, Emmanuel Letellier, Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras, Springer, Lecture Notes in Mathematics 1859, page 1,\nThe trigonometric sums of 𝒢^F are thus (up to a scalar) the Fourier transforms of the characteristic functions of the G^F!!-orbits of 𝒢^F." }, { "text": "2012, David Brandwood, Fourier Transforms in Radar and Signal Processing, Artech House, 2nd Edition, page 1,\nThe Fourier transform is a valuable theoretical technique, used widely in fields such as applied mathematics, statistics, physics, and engineering." } ], "glosses": [ "A particular integral transform that when applied to a function of time (such as a signal), converts the function to one that plots the original function's frequency composition; the resultant function of such a conversion." ], "links": [ [ "mathematical analysis", "mathematical analysis" ], [ "physics", "physics" ], [ "electrical engineering", "electrical engineering" ], [ "integral transform", "integral transform" ], [ "signal", "signal" ] ], "qualifier": "harmonic analysis", "raw_glosses": [ "(mathematical analysis, harmonic analysis, physics, electrical engineering) A particular integral transform that when applied to a function of time (such as a signal), converts the function to one that plots the original function's frequency composition; the resultant function of such a conversion." ], "topics": [ "business", "electrical", "electrical-engineering", "electricity", "electromagnetism", "energy", "engineering", "mathematical-analysis", "mathematics", "natural-sciences", "physical-sciences", "physics", "sciences" ], "wikipedia": [ "Fourier transform", "Jean Baptiste Joseph Fourier" ] } ], "synonyms": [ { "tags": [ "initialism" ], "word": "FT" } ], "translations": [ { "code": "nl", "lang": "Dutch", "sense": "mathematics: a type of integral transform", "word": "Fouriertransformatie" }, { "code": "nl", "lang": "Dutch", "sense": "mathematics: a type of integral transform", "word": "Fourier-transformatie" }, { "code": "fi", "lang": "Finnish", "sense": "mathematics: a type of integral transform", "word": "Fourier-muunnos" }, { "code": "fr", "lang": "French", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "transformation de Fourier" }, { "code": "gl", "lang": "Galician", "sense": "mathematics: a type of integral transform", "word": "transformada de Fourier" }, { "code": "de", "lang": "German", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "Fouriertransformation" }, { "code": "de", "lang": "German", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "Fourier-Transformation" }, { "code": "el", "lang": "Greek", "roman": "metaschimatismós Fourié", "sense": "mathematics: a type of integral transform", "tags": [ "masculine" ], "word": "μετασχηματισμός Φουριέ" }, { "code": "it", "lang": "Italian", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "trasformata di Fourier" }, { "code": "ja", "lang": "Japanese", "roman": "Fūrie henkan", "sense": "mathematics: a type of integral transform", "word": "フーリエ変換" }, { "code": "fa", "lang": "Persian", "roman": "tabdil-e furiye", "sense": "mathematics: a type of integral transform", "word": "تبدیل فوریه" }, { "code": "pl", "lang": "Polish", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "transformacja Fouriera" }, { "code": "ro", "lang": "Romanian", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "tranformare Fourier" }, { "code": "ru", "lang": "Russian", "roman": "preobrazovánije Furʹjé", "sense": "mathematics: a type of integral transform", "tags": [ "neuter" ], "word": "преобразова́ние Фурье́" }, { "code": "es", "lang": "Spanish", "sense": "mathematics: a type of integral transform", "tags": [ "feminine" ], "word": "transformada de Fourier" }, { "code": "sv", "lang": "Swedish", "sense": "mathematics: a type of integral transform", "tags": [ "common-gender" ], "word": "Fouriertransform" } ], "word": "Fourier transform" }
Download raw JSONL data for Fourier transform meaning in English (6.6kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-12-15 from the enwiktionary dump dated 2024-12-04 using wiktextract (8a39820 and 4401a4c). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.